Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611153

ABSTRACT

Carbon fiber fabric-reinforced poly(ether ether ketone) (CFF-PEEK) composites exhibit exceptional mechanical properties, and their flexibility and conformability make them a promising alternative to traditional prepregs. However, the formation of the CFF-PEEK composite is trapped in the high viscosity of PEEK, the smooth surface, and tightly interwoven bundles of CFF. It is more difficult for the resin to flow through the fibers of complex textile structures. Here, a simple film stacking method using the hot-pressing process of plain-woven CFF-PEEK thermoplastic composites is discussed. The uniform distribution of PEEK resin between each layer of CFF reduces the flow distance during the molding process, preventing defects in the composite material effectively. Four process parameters, including molding temperature (370, 385, 400, and 415 °C), molding pressure (1, 2, 4, 8, and 10 MPa), molding time (10, 20, 30, 40, 60, and 90 min), and pre-compaction process, are considered. Interlaminar shear strength (ILSS), tensile strength, and flexural strength of CFF/PEEK composites are evaluated to optimize the process parameters. Moreover, ultrasonic scanning microscopy and scanning electron microscopy are employed to observe the formation quality and microscopic failure modes of CFF/PEEK composites, respectively. The ultimate process parameters are a molding temperature of 410 °C, molding pressure of 10 MPa, molding time of 60 min, and the need for the pre-compaction process. Under the best process parameters, the ILSS is 62.5 MPa, the flexural strength is 754.4 MPa, and the tensile strength is 796.1 MPa. This work provides valuable insight for studying the process parameters of fiber fabric-reinforced thermoplastic polymer composites and revealing their impact on mechanical properties.

2.
J Nanobiotechnology ; 22(1): 165, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600567

ABSTRACT

As a common musculoskeletal disorder, frozen shoulder is characterized by thickened joint capsule and limited range of motion, affecting 2-5% of the general population and more than 20% of patients with diabetes mellitus. Pathologically, joint capsule fibrosis resulting from fibroblast activation is the key event. The activated fibroblasts are proliferative and contractive, producing excessive collagen. Albeit high prevalence, effective anti-fibrosis modalities, especially fibroblast-targeting therapies, are still lacking. In this study, microRNA-122 was first identified from sequencing data as a potential therapeutic agent to antagonize fibroblast activation. Then, Agomir-122, an analog of microRNA-122, was loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Agomir-122@NP), a carrier with excellent biocompatibility for the agent delivery. Moreover, relying on the homologous targeting effect, we coated Agomir-122@NP with the cell membrane derived from activated fibroblasts (Agomir-122@MNP), with an attempt to inhibit the proliferation, contraction, and collagen production of abnormally activated fibroblasts. After confirming the targeting effect of Agomir-122@MNP on activated fibroblasts in vitro, we proved that Agomir-122@MNP effectively curtailed fibroblasts activation, ameliorated joint capsule fibrosis, and restored range of motion in mouse models both prophylactically and therapeutically. Overall, an effective targeted delivery method was developed with promising translational value against frozen shoulder.


Subject(s)
Bursitis , MicroRNAs , Nanoparticles , Mice , Animals , Humans , Fibroblasts/metabolism , Bursitis/drug therapy , Bursitis/metabolism , Cell Membrane , Fibrosis , Collagen/metabolism , MicroRNAs/metabolism
3.
J Hazard Mater ; 465: 133049, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38043428

ABSTRACT

Covalent organic frameworks (COF) have desirable properties such as high porosity, low mass density, excellent heat resistance and regulatable structure, making them an ideal candidate for membrane material. Traditional methods for preparing covalent organic framework composite membranes, such as interfacial polymerization, vacuum filtration, and covalent organic framework abrasive coating. Stand-alone COF membranes produced by the above methods usually suffer from problems such as poor mechanical properties. Here, we fabricated high performance COF composite membranes by modified casting-precipitation-evaporation method. The designed composite membranes consisted of the ionic COF (iCOF) selective layer and the support layer are applied in dye/salt separation. The high permeability (∼ 68 L h-1 m-2 bar-1), high dyes rejection (97% for Rose Bengal), and low salts rejection (∼ 2.86% for NaCl) are achieved by the iCOF functional layer. The as-prepared composite membranes have a hydrophilic and highly smooth surface, making them have good anti-fouling performance. In addition, the rigid pore structure of iCOF selective layer endows the composite membranes with excellent stability, the composite membranes maintain original structure under high pressure (6 bar) and ultrasonic treatment (16 kHz for 60 min). This work may open up a novel path to fabricate iCOF composite membranes, which exhibit great potential in dye/salt separation.

4.
J Mech Behav Biomed Mater ; 150: 106240, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992582

ABSTRACT

Hemostatic materials are of great significance for rapid control of bleeding, especially in military trauma and traffic accidents. Chitosan (CS) hemostatic sponges have been widely concerned and studied due to their excellent biocompatibility. However, the hemostatic performance of pure chitosan sponges is poor due to the shortcoming of strong rigidity. In this study, CS and hydroxypropylmethylcellulose (HPMC) were combined to develop a safe and effective hemostatic composite sponges (CS/HPMC) for hemorrhage control by a simple mixed-lyophilization strategy. The CS/HPMC exhibited excellent flexibility (the flexibility was 74% higher than that of pure CS sponges). Due to the high porosity and procoagulant chemical structure of the CS/HPMC, it exhibited rapid hemostatic ability in vitro (BCI was shortened by 50% than that of pure CS sponges). The good biocompatibility of the obtained CS/HPMC was confirmed via cytotoxicity, hemocompatibility and skin irritation tests. The CS/HPMC can induced the erythrocyte and platelets adhesion, resulting in significant coagulation acceleration. The CS/HPMC had excellent performance in vivo assessments with shortest clotting time (40 s) and minimal blood loss (166 mg). All above results proved that the CS/HPMC had great potential to be a safe and rapid hemostatic material.


Subject(s)
Chitosan , Hemostatics , Humans , Hemostatics/pharmacology , Hemostatics/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Hypromellose Derivatives/pharmacology , Hemostasis , Blood Coagulation , Hemorrhage
5.
Carbohydr Polym ; 320: 121235, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37659820

ABSTRACT

Injectable biocompatible hydrogels with multiple functions, including self-healing, adhesion, antibacterial activity, and suitable mechanical properties, are highly desirable for enhancing wound healing. In this study, a new class of multi-functional injectable self-healing cellulose-based hydrogels was synthesised using dynamic covalent acylhydrazone linkages for wound dressing. The carboxymethyl cellulose-graft-adipic dihydrazide (CMC-ADH)/4-Formylbenzoic acid-terminated poly(ethylene glycol) (PEG-FBA) (CMC-ADH/PEG-FBA) hydrogels have adjustable gelation time and excellent self-healing ability. In addition, drug release and in vitro antibacterial activities against Gram-positive and Gram-negative bacteria confirmed the sustained drug-release capacity of the hydrogels. Moreover, haemostasis and wound-healing effects were investigated using an in vivo haemorrhaging liver mouse model and a full-thickness skin defect model, and the results indicated that they not only promoted the wound-healing process but also presented excellent haemostatic effects. The CMC-ADH/PEG-FBA gels also exhibited good adhesion to irregular wounds and significantly enhanced angiogenic ability in vivo. This excellent wound-healing performance occurs because hydrogels can quickly stop bleeding, provide a moist and closed environment for the wound to prevent bacterial invasion, release ciprofloxacin (CIP), reduce inflammatory reactions, and promote wound tissue regeneration. In summary, the synthesised multi-functional gels are ideal candidates for treating haemorrhages and irregular wounds.

6.
Adv Sci (Weinh) ; 10(25): e2302654, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37381631

ABSTRACT

Special separation membranes are widely employed for separation and purification purposes under challenging operating conditions due to their low energy consumption, excellent solvent, and corrosion resistance. However, the development of membranes is limited by corrosion-resistant polymer substrates and precise interfacial separation layers. Herein, polyaniline (PANI) is employed to achieve insitu anchoring of multiple interfaces, resulting in the fabrication of polyaniline@graphene oxide/polyether ether ketone (PANI@GO/PEEK) membranes. Insitu growth of PANI achieves the adequate bonding of the PEEK substrate and GO separation interface, which solves the problem of solution processing of PEEK and the instability of GO layers. By bottom-up confined polymerization of aniline, it could control the pore size of the separation layer, correct defects, and anchor among polymer, nano-separation layer, and nano-sheet. The mechanism of membrane construction within the confined domain and micro-nano structure modulation is further explored. The membranes demonstrate exceptional stability realizing over 90% rejection in 2 m HCl, NaOH, and high temperatures. Additionally, -membranes exhibit remarkable durability after 240 days immersion and 100 h long-term operation, which display the methanol flux of 50.2 L m-2 h-1 and 92% rejection of AF (585 g mol-1 ). This method substantially contributes to special separation membranes by offering a novel strategy.

7.
Arthrosc Tech ; 12(5): e635-e638, 2023 May.
Article in English | MEDLINE | ID: mdl-37323780

ABSTRACT

The anterior horn tear of the lateral meniscus, often accompanied with local parameniscal cysts, is usually managed by cysts debridement and meniscus repair with the outside-in technique (OIT). However, a big gap between the meniscus and anterior capsule would be produced after cysts debridement and be difficult to be closed by the OIT. Or, the OIT would result in knee pain because of the overly tight knots. Therefore, we devised an anchor repair technique. Following the cysts resection, the anterior horn of the lateral meniscus (AHLM) is fixed at the anterolateral edge of the tibial plateau with 1 suture anchor, and then followed by suturing the AHLM with the surrounding synovium to promote healing. We recommend this technique as an alternative method for repairing an AHLM tear accompanied with local parameniscal cysts.

8.
J Colloid Interface Sci ; 645: 493-501, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37159991

ABSTRACT

Improving the performance of proton exchange membranes (PEMs) through the synthesis of sulfonated polymers with elaborate molecular structures has received extensive approval. However, the tedious synthetic process and consequently high costs restrain their possible substitution for Nafion, a classic PEM material. Herein, a series of semi-crystalline sulfonated poly(ether ketone)s with fluorene-based units were prepared via direct copolymerization of commercially available monomers and followed post-sulfonation, namely SPEK-FD-x, where × represents the molar ratio of the fluorene-containing monomer to the employed bisphenol monomers. The entire synthetic pathway was facile without involving hardly accessible materials. Subsequently, various properties of SPEK-FD-x membranes were investigated and further compared with Nafion 117. Due to the formation of the well-defined hydrophilic-hydrophobic microphase separation morphology and the reinforcement of the PEK crystalline regions, the SPEK-FD-x membranes exhibited outstanding proton conductivity, resistance for methanol permeation, as well as dimensional, thermal, oxidative, and mechanical stability. Among them, the overall behavior of the SPEK-FD-25 membrane was comparable to or even greater than that of Nafion 117, most importantly, it also performed decently in both H2/air fuel cells and direct methanol fuel cells. Therefore, with the straightforward synthesis and superior performance, the SPEK-FD-x membranes may serve as a promising alternative to Nafion.

9.
Dalton Trans ; 52(18): 6029-6040, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37042629

ABSTRACT

To develop the next-generation metal agents for efficiently inhibiting tumor growth, we synthesized a series of new Zn(II) complexes (C1-C5) derived from 2-pyridinecarboxaldehyde thiosemicarbazone and investigated their structure-activity relationships. C5 bearing two methyl groups at the N-4 position of the ligand exerted the strongest inhibition effect among all the Zn(II) complexes. Importantly, C5 exerted an effective inhibitory effect on tumor growth and produced few side effects in vivo. We further confirmed the antitumor mechanisms of C5, including arresting the cell cycle at the S phase, inducing apoptosis, inducing lethal autophagy, and suppressing angiogenesis.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Thiosemicarbazones , Humans , Thiosemicarbazones/pharmacology , Zinc/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Cell Line, Tumor
10.
ACS Appl Mater Interfaces ; 14(48): 54127-54140, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36413754

ABSTRACT

Conductive hydrogels have attracted extensive interest owing to its potential in soft robotics, electronic skin, and human monitoring. However, insufficient mechanical properties, lower adhesivity, and unsatisfactory conductivity seriously hinder potential applications in this emerging field. Herein, a highly elastic conductive hydrogel with a combination of favorable mechanical properties, self-adhesiveness, and excellent electrical performance was achieved by the synergistic effect of aminated lignin (AL), polydopamine (PDA), polyacrylamide (PAM) chains, and biomass carbon aerogel (C-SPF). In detail, AL was applied to induce slow oxidative polymerization of DA for preparing the sticky hydrogel containing PDA. Then, C-SPF carbon aerogel was used as a matrix to construct a dual-network structured composite hydrogel by combining with the hydrogels derived from PDA, AL, and PAM. The as-prepared conductive hydrogel displayed excellent mechanical performance, strong adhesive strength, and repeatable adhesivity. The prepared hydrogel-based pressure sensor possessed fast response (0.6 s loading and 0.8 s unloading stress time), high response (maximum RCR = 1.8 × 104), wide working pressure range (from 0 to 240.0 kPa), and excellent durability (stable 500 compression cycles with 30% deformation). In addition, the prepared sensor also displayed ultrahigh sensitivity (170 kPa-1), which was near 4 orders of magnitude higher than the conventional lignin-modified PAM hydrogels. The multiple interactions between hydrogel components and the mechanical properties of hydrogel were also verified by molecular dynamics investigation. Moreover, the excellent cytocompatibility and antibacterial activity of this composite hydrogel ensured high potential in various applications such as human/machine interaction, artificial intelligence, personal healthcare, and wearable devices.


Subject(s)
Adhesives , Lignin , Humans , Dopamine , Carbon , Resin Cements , Artificial Intelligence
11.
RSC Adv ; 12(34): 21736-21741, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36043096

ABSTRACT

Lignin, one of the main components of lignocellulose, can be used as an alternative to chemical polyols in the production of polyurethane because of its abundant phenolic and alcohol hydroxyls. Traditionally, lignin is directly applied in the preparation of polyurethane; however, modified lignin has been proved to be superior, especially that obtained by the oxypropylation reaction. Therefore, lignopolyol obtained by mild and efficient oxypropylation was utilized in the production of rigid polyurethane foam in this study. Specifically, the effects of the content of lignopolyol on the chemical structure, morphological structure, mechanical properties and thermal stability of the lignin-based rigid polyurethane foam were investigated. It was found that the compressive strength of the rigid polyurethane foam was significantly improved with the addition of lignopolyol compared with that of the pure polyurethane foam, which was attributed to the fact that oxypropylation made lignin into highly branched and functionalized polyols by transforming all phenolic hydroxyls into aliphatic hydroxyls. Moreover, when the molal weight of lignopolyol accounted for 40% of the added polyols, the generated foam showed optimal uniformity and regularity, and the compressive strength reached 0.18 MPa, meeting the requirements of industrial application, below which, the amount of undesired reactions is bound to increase. As a consequence, the added amount of lignopolyol was increased as much as possible on the basis of guaranteeing the desired properties, which was more conducive to realizing the green degradation and economic synthesis of rigid polyurethane foam.

12.
Carbohydr Polym ; 293: 119673, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35798414

ABSTRACT

In this study, the anti-freezing conductive hydrogel electrolytes with outstanding mechanical properties were synthesized by a facile and feasible method. The mechanical and anti-freezing properties of the synthesized polyacrylamide/lithium lhloride/water soluble cellulose acetate (PAM/LiCl/WSCA) hydrogels are significantly enhanced with the addition of WSCA and LiCl. The tensile strength and toughness of the gels were gradually increased to 341 KPa and 1.2 MJ/m3, respectively. The hydrogel electrolyte can remain soft and flexible at -80 °C, displaying certain elasticity and electrical conductivity. In addition, the super-capacitor assembled with PAM/LiCl/WSCA hydrogel as electrolyte showed excellent stability in capacitance retention after 500 times of folding cycles and 10,000 times of charge and discharge tests. The capacitor still maintains 64.64 % of its capacity at -40 °C. This facile strategy to fabricate anti-freezing conductive hydrogel electrolyte provides a new idea and way to the application of hydrogels as electrolytes in extreme cold environments.


Subject(s)
Electrolytes , Hydrogels , Cellulose , Electric Capacitance , Electric Conductivity
13.
Sensors (Basel) ; 22(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35161517

ABSTRACT

Aiming at the problem of unmanned reconfiguration and docking of ground vehicles under complex working conditions, we designed a piece of docking equipment composed of an active mechanism based on a six-degree-of-freedom platform and a locking mechanism with multi-sensors. Through the proposed control method based on laser and image sensor information fusion calculation, the six-dimensional posture information of the mechanism during the docking process is captured in real time so as to achieve high-precision docking. Finally, the effectiveness of the method and the feasibility of the 6-DOF platform are verified by the established model. The results show that the mechanism can meet the requirements of smooth docking of ground unmanned vehicles.


Subject(s)
Algorithms , Data Collection
14.
Adv Sci (Weinh) ; 9(1): e2103706, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34766471

ABSTRACT

Confined polymerization is an effective method for precise synthesis, which can further control the micro-nano structure inside the composite material. Polyaniline (PANI)-based composites are usually prepared by blending and original growth methods. However, due to the strong rigidity and hydrogen bonding of PANI, the content of PANI composites is low and easy to agglomerate. Here, based on confined polymerization, it is reported that polyaniline /polyether ether ketone (PANI/PEEK) film with high PANI content is synthesized in situ by a one-step method. The micro-nano structure of the two polymers in the confined space is further explored and it is found that PANI grows in the free volume of the PEEK chain, making the arrangement of the PEEK chain more orderly. Under the best experimental conditions, the prepared 16 µm-PANI/PEEK film has a dielectric constant of 205.4 (dielectric loss 0.401), the 75 µm-PANI/PEEK film has a conductivity of 3.01×10-4 S m-1 . The prepared PANI/PEEK composite film can be further used as electronic packaging materials, conductive materials, and other fields, which has potential application prospects in anti-static, electromagnetic shielding materials, corrosion resistance, and other fields.

15.
J Colloid Interface Sci ; 610: 905-912, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34865743

ABSTRACT

Membrane fouling during the use of separation membrane has always been the main reason for the degradation of membrane performance. The traditional solution is complicated and inefficient, so we proposed multi-step integration method to prepare antifouling zwitterionic poly(aryl ether sulfone) (PAES-Z-x) ultrafiltration (UF) membrane with higher efficiency. We designed and synthesized a bisphenol precursor containing tertiary amine groups, which could provide reactive sites for grafting zwitterionic group. Afterwards, the zwitterionic modified UF membrane was prepared by graft copolymerization and non-solvent-induced phase separation (NIPS). The morphology, hydrophilicity, water flux and rejection of the PAES-Z-x membrane could be optimized by tuning zwitterion content. The hydration layer formed by zwitterions effectively reduced the adsorption of proteins and endowed the membrane good antifouling properties. The resulting membrane showed the pure water flux increased (up to 311 L m-2h-1 bar-1), high bovine serum albumin (BSA) rejection (97%) and good water flux recovery ratio (FRR) (82.8%). Zwitterionic antifouling PAES UF membrane prepared by a simple and effective method provided a new direction for improving PAES UF membrane's antifouling performance.


Subject(s)
Biofouling , Biofouling/prevention & control , Membranes, Artificial , Serum Albumin, Bovine , Sulfones , Ultrafiltration
16.
Langmuir ; 37(24): 7449-7456, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34124916

ABSTRACT

Membrane separation has been considered to be the most effective decontamination method for oily waste water. The most significant point of membrane separation is the resistance against membrane fouling. Fabricating hierarchical architectures on the membrane surface is an available approach to improving its anti-fouling property. In this study, ZnO nanoneedles were successfully anchored onto surface-sulfonated poly(ether-ether-ketone) (PEEK) felt via UV/ozone cleaning and hydrothermal synthesis. The modified felt (PEEK-f-Z) showed much better anti-fouling properties and far higher rejection height (33 cm) than the unmodified felt (17 cm) with a separation efficiency up to 99.99%. The enhanced separation properties could be attributed to the stronger water locking capability of the hierarchical architectures on the surface. Furthermore, benefiting from the great chemical stability of PEEK substrates and ZnO nanoneedles, the as-prepared membrane exhibited admirable solvent resistance, mechanical strength, and thermal stability. As a result, PEEK-f-Z could even separate immiscible organic liquids with different polarities and collect hot water from the oil/water mixture, promising to be used under severe conditions.


Subject(s)
Biofouling , Zinc Oxide , Benzophenones , Biofouling/prevention & control , Ketones , Polyethylene Glycols , Polymers , Water
17.
ACS Appl Mater Interfaces ; 13(20): 23547-23557, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33979135

ABSTRACT

To obtain anion exchange membranes with both high ionic conductivity and good dimensional stability, a series of side-chain-type poly(arylene ether sulfone)s (PAES-QDTPM-x) were designed and synthesized. Quaternary ammonium (QA) groups were densely aggregated and grafted onto the main chain via flexible hydrophobic spacers. Well-defined microphase separation was confirmed by small-angle X-ray scattering. PAES-QDTPM-0.30 exhibited reasonably high conductivity (39.4 mS cm-1 at 20 °C and 76.1 mS cm-1 at 80 °C) and excellent dimensional stability at 80 °C (11.9% in length, 11.2% in thickness) due to the concentration of ion clusters and the side-chain-type structure. All membranes maintained over 82% of the conductivity after alkali treatment for 14 days. In the H2/O2 fuel cell performance test, the maximum power density of PAES-QDTPM-0.30 at 60 °C was 225.8 mW cm-2.

18.
J Hazard Mater ; 414: 125489, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33676253

ABSTRACT

It is highly challenging to prepare durable and chemical resistant ultra-permeable membranes that can quickly separate small organic molecules like dye or inorganic salt in the complex textile wastewater industry. Here, side-chain sulfonated poly(ether ether ketone) (SPEEK) was synthesized and prepared the poly(ether ether ketone) (PEEK) - SPEEK nanofiltration (NF) membrane by a simple dipping coating and heat treatment. Single component filtration tests of the optimized membrane showed ultrahigh pure water flux (126 Lm-2 h-1 bar-1) and relatively low NaCl rejection (6.7%). Moreover, the negatively charged membrane exhibited excellent rejection of 98.8% toward Congo red (CR). The pure water flux was about 9 folds than that of commercial NF270 with comparable solutes rejection. The separation tests of CR and NaCl mixed solution at optimized conditions exhibited ultra-high permeation flux (34 Lm-2 h-1 bar-1), satisfactory dye (98.8%)/salt (< 10%) rejection and the separation performance remained stable after 10 cycles. Finally, the contaminated membrane was washed with ethanol, the permeation flux and the CR rejection remained constant after several cycles, while the commercial NF1 membrane exhibited serious swelling only within one cycle. The prepared membrane exhibited good organic solvents resistance and antifouling properties. Thus, this work confirmed the PEEK-SPEEK NF membrane showed great potential in the sustainable treatment of textile wastewater.

19.
ACS Appl Mater Interfaces ; 13(10): 12501-12508, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33683097

ABSTRACT

An optical organic vapor sensor array based on colorimetric or fluorescence changes quantified by spectroscopy provides an efficient method for realizing rapid identification and detection of organic vapor, but improving the sensitivity of the optical organic vapor sensor is challenging. Here, AIE/polymer (AIE, ggregation-induced emission) composites into microwires arrays are fabricated as organic vapor sensors with specific recognition and high sensitivity for different vapors using the capillary-bridge-mediated assembly method. Such organic vapor sensor successfully detects organic vapor relying on a swelling-induced fluorescence change of the AIE/polymer composites, combating the unique property of AIE molecules and vapor absorption-induced polymer swelling. A series of AIE/polymer composites into microwires arrays with four different groups on the AIE molecule and four different side chains on the polymer is fabricated to detect four different organic vapors. The mechanism for improved sensitivity of the AIE/polymer composites microwires arrays sensors is the same because of the similar polarity between the group of AIE molecules and the vapor molecules. Molecular design of the side chains of the polymer and the groups of AIE molecules based on the polarity of the targeted vapor molecule can enhance the sensitivity of the sensors to the subparts per million level.

20.
Int J Biol Macromol ; 161: 666-673, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32544587

ABSTRACT

In this paper, a novel way for high value-added application of lignosulfonate is presented. In this study, we use lignosulfonate nanosheets to fabricate a free-standing, binder-free, ultrathin and light-weight conductive film electrode via vacuum filtration method. The results show that LS is a promising candidate material for the preparation of electrochemical capacitor film electrode. It is worth mentioning that we use non-toxic, pollution-free aqueous solution (water) over organic solvents as the dispersion during the reductive graphene oxide (RGO) preparation process. The electrochemical measurements exhibit that the resistivity of lignosulfonate nanosheets/RGO (LNRGO) film electrode is 0.66 × 10-3 kΩ cm-1. The specific capacitance of the LNRGO film electrode is calculated to be 120 mF cm-2 at the current density of 0.2 mA cm-2, which is approximately 6.67 times larger than that of RGO-water film electrode.


Subject(s)
Electric Capacitance , Graphite/chemistry , Lignin/analogs & derivatives , Membranes, Artificial , Electrodes , Lignin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...